China Best Sales 100W 200W 500W DC Brush Motor with Brake vacuum pump connector

Product Description

Different Power 20W ~ 1500W Brush DC Motor with Flange

Brush DC Motor Specification

 

Model Torque
( mN.m)
Speed
(r/min)
Power
(W)
Voltage
(V)
Max Current
( A)
CW/CCW Speed Difference
( r/min)
55ZYT01 63.7 3000 20 24 1.50  200
55ZYT02 63.7 3000 20 27 1.30  200
55ZYT03 63.7 3000 20 48 0.70  200
55ZYT04 63.7 3000 20 110 0.34  200
55ZYT05 55.7 6000 35 24 2.50  300
55ZYT06 55.7 6000 35 27 2.20  300
55ZYT07 55.7 6000 35 48 1.30  300
55ZYT08 55.7 6000 35 110 0.54  300
55Z YT10 63.7 3600 24 110 0.40  200
55ZYT51 92.3 3000 29 24 2.10  200
55ZYT52 92.3 3000 29 27 1.80  200
55ZYT53 92.3 3000 29 48 1.10  200
55ZYT54 92.3 3000 29 110 0.46  200
55ZYT55 79.6 6000 50 24 3.45  300
55ZYT56 79.6 6000 50 27 3.10  300
55ZYT57 79.6 6000 50 48 1.74  300
55ZYT58 79.6 6000 50 110 0.74  300
55ZYT59 85 8000- 10000 80 110 1.15  500
55ZYT61 76.4 5000 40 24 2.50  250
55ZYT63/H1 127.4 1500 20 24 1.25  100
55ZYT64/H9 95 3000 30 220 0.25  200
55ZYT65 89.2 7500 70 110 1.00  400
55ZYT66 110.8 2500 29 110 0.45  150
55ZYT68 69.6 5500 40 36 1.70  250
55ZYT72 95.5 2500 25 24 1.70  150
70ZYT01 159.2 3000 50 24 3.20  200
70ZYT02 159.2 3000 50 27 2.90  200
70ZYT03 159.2 3000 50 48 1.50  200
70ZYT04 159.2 3000 50 110 0.70  200
70ZYT05 135.4 6000 85 24 5.20  300
70ZYT06 135.4 6000 85 27 4.80  300
70ZYT07 135.4 6000 85 48 2.60  300
70ZYT08 135.4 6000 85 110 1.10  300
70ZYT16 191 2000 40 24 2.30  100
70ZYT21 95.5 3000 50 220 0.20  200
70ZYT51 223 3000 70 24 4.30  200
70ZYT52 223 3000 70 27 3.80  200
70ZYT53 223 3000 70 48 2.20  200
70ZYT54 223 3000 70 110 0.95  200
70ZYT55 191.1 6000 120 24 7.50  300
70ZYT56 191.1 6000 120 27 6.60  300
70ZYT57 191.1 6000 120 48 3.80  300
70ZVT58 191.1 6000 120 110 1.60  300
70ZYT59 166.6 7500-9500 148 110 1.95  400
70ZYT60 238.8 4000 100 110 1.30  200
70ZYT80 223 3000 70 80 1.20  200
90ZYT01 323 1500 50 110 0.66  100
90ZYT02 323 1500 50 220 0.33  100
90ZYT03 294 3000 92 110 1.20  200
90ZYT04 294 3000 92 220 0.60  200
90ZYT05 294 3000 92 24 6.10  200
90ZYT51 510 1500 80 110 1.10  100
90ZYT52 510 1500 80 220 0.55  100
90ZYT53 480 3000 150 110 2.00  200
90ZYT54 480 3000 150 220 1.00  200
90ZYT55 510 1500 80 24 5.00  100
90ZYT56 480 3000 150 24 8.00  200
90ZYT101 796 1500 125 110 1.60  100
90ZYT102 7986 1500 125 220 0.80  100
90ZYT103 733 3000 230 110 2.80  200
90ZYT104 733 3000 230 220 1.50  200
90ZYT105 733 3000 230 24 13.50  200
90ZYT106 796 1500 125 24 6.50  200
110ZYT51 1177 1500 185 110 2.50  100
110ZYT52 1177 1500 185 220 1.25  100
110ZYT53 980 3000 308 110 4.00  200
110ZYT54 980 3000 308 220 2.00  200
110ZYT55 980 3000 308 24 16.50  200
110ZYT56 1177 1500 180 24 8.00  100
110ZYT101 1560 1500 245 110 3.00  100
110ZYT102 1560 1500 245 220 1.50  100
110ZYT103 1274 3000 400 110 4.80  200
110ZYT104 1274 3000 400 220 2.40  200
110ZYT105 1274 3000 400 24 22.50  200
110ZYT106 1560 1500 250 24 12.00  100
110ZYT151 2390 1500 375 110 4.50  100
110ZYT152 2390 1500 375 220 2.30  100
110ZYT153 2230 3000 700 110 8.50  200
110ZYT154 2230 3000 700 220 4.20  200
110ZYT155 2230 3000 700 24 45.00  200
110ZYT156 2390 1500 370 24 22.00  100
130ZYT51 3185 1500 550 110 5.80  100
130ZYT52 3185 1500 550 220 2.90  100
130ZYT53 3185 3000 1000 110 11.00  200
130ZYT54 3185 3000 1000 220 5.50  200
130ZYT55 3185 3000 1000 24 50.00  200
130ZYT56 3185 1500 550 24 28.00  100
130ZYT101 3822 1500 700 110 7.00  100
130ZYT102 3822 1500 700 220 3.50  100
130ZYT103 3822 3000 1200 110 13.00  200
130ZYT104 3822 3000 1200 220 6.50  200
130ZYT105 3820 1500 700 24 30.00  100
130ZYT106 3820 3000 1100 24 50.00  200
130ZYT151 4500 1500 1000 110 8.00  100
130ZYT152 4500 1500 1000 220 4.00  100
130ZYT153 4500 3000 1500 110 15.00  200
130ZVT154 4500 3000 1500 220 8.00  200
130ZYT155 4500 1500 1000 24 38.00  100
130ZYT156 4500 3000 1200 24 55.00  200
130ZYT185 6200 1500 1200 24 60.00  100

Note:

If this model is not what you want, please freely tell us about your requirement. We will provide you with a suitable motor solution and price soon.

About Our Company

HISTORY: Greensky is a mechanical brand of CHINAMFG Power Co., Ltd. with over 10 years’
mechanical manufacturing experiences. Greensky Power always strictly stands on the
principle of Best Customer Satisfaction.

MISSION: Material Inspection, Production Control, Finished Goods Test, Pre-delivery Inspection

QUALITY: “Once and forever” is our goal to serve customers in the world. Once we do
business with the customer, we will do business forever.

MARKET: 30 different countries, mainly Germany, Austria, Japan, USA and Middle-East.

DELIVERY: 100% on-time delivery Guaranteed.

SERVICES: Fast response in English, German, Japanese and Chinese languages.

OEM: Customized orders are welcome at CHINAMFG Power.

Exhibition

Certificates

FAQ

1 Q: What’s your MOQ?
   A: 1unit is acceptable.  

2 Q: What about your warranty for your 1 phase AC gear motor?
 
 A: One year.

3 Q: Do you provide OEM service with customer-logo?
   A: Yes, we could do OEM orders, but we mainly focus on our own brand.

4 Q: How about your payment terms?
   
A: TT, western union and Paypal. 100% payment in advance for orders less $5,000. 30% deposit and balance before delivery for orders over $5,000.

5 Q: How about your packing?
   
A: Carton, Plywood case and foam inside. If you need more, we can pack all goods with pallet 

6 Q: What information should be given, if I buy 1 phase AC gear motor from you?
   
A: Rated power, gearbox ratio, input speed, mounting position. More details, better!

7 Q: How do you deliver the 1 phase ac gear motor?
   
A: We will compare and choose the most suitable ways of delivery by sea, air or express courier.

We hope you will enjoy cooperating with us.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Power Tools
Operating Speed: High Speed
Function: Driving
Casing Protection: Protection Type
Number of Poles: 4
Structure and Working Principle: Brush
Samples:
US$ 100/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

brake motor

Are there any emerging trends in brake motor technology, such as digital control?

Yes, there are emerging trends in brake motor technology that are shaping the future of this field. One such trend is the adoption of digital control systems, which offer several advantages over traditional control methods. These advancements in digital control are revolutionizing brake motor technology and unlocking new possibilities for improved performance, efficiency, and integration within industrial processes. Here’s a detailed explanation of the emerging trends in brake motor technology, including the shift towards digital control:

  • Digital Control Systems: Digital control systems are becoming increasingly prevalent in brake motor technology. These systems utilize advanced microprocessors, sensors, and software algorithms to provide precise control, monitoring, and diagnostics. Digital control enables enhanced motor performance, optimized energy efficiency, and improved operational flexibility. It allows for seamless integration with other digital systems, such as programmable logic controllers (PLCs) or industrial automation networks, facilitating intelligent and interconnected manufacturing processes.
  • Intelligent Motor Control: The integration of digital control systems with brake motors enables intelligent motor control capabilities. These systems use sensor feedback and real-time data analysis to dynamically adjust motor parameters, such as speed, torque, and braking force, based on the changing operating conditions. Intelligent motor control optimizes motor performance, minimizes energy consumption, and enhances overall system efficiency. It also enables predictive maintenance by continuously monitoring motor health and providing early warnings for potential faults or failures.
  • Network Connectivity and Industry 4.0: Brake motors are increasingly designed to be part of interconnected networks in line with the principles of Industry 4.0. With digital control systems, brake motors can be connected to industrial networks, enabling real-time data exchange, remote monitoring, and control. This connectivity facilitates centralized monitoring and management of multiple brake motors, improves system coordination, and enables predictive analytics for proactive decision-making. It also allows for seamless integration with other smart devices and systems, paving the way for advanced automation and optimization in manufacturing processes.
  • Condition Monitoring and Predictive Maintenance: Digital control systems in brake motors enable advanced condition monitoring and predictive maintenance capabilities. Sensors integrated into the motor can collect data on parameters such as temperature, vibration, and load conditions. This data is processed and analyzed in real-time, allowing for early detection of potential issues or performance deviations. By implementing predictive maintenance strategies, manufacturers can schedule maintenance activities more efficiently, reduce unplanned downtime, and optimize the lifespan and reliability of brake motors.
  • Energy Efficiency Optimization: Digital control systems provide enhanced opportunities for optimizing energy efficiency in brake motors. These systems can intelligently adjust motor parameters based on load demand, operating conditions, and energy consumption patterns. Advanced algorithms and control techniques optimize the motor’s energy usage, reducing power wastage and maximizing overall energy efficiency. Digital control also enables integration with energy management systems, allowing for better monitoring and control of energy consumption across the entire manufacturing process.
  • Data Analytics and Machine Learning: The integration of digital control systems with brake motors opens up possibilities for leveraging data analytics and machine learning techniques. By collecting and analyzing large volumes of motor performance data, manufacturers can gain valuable insights into process optimization, fault detection, and performance trends. Machine learning algorithms can be applied to identify patterns, predict motor behavior, and optimize control strategies. This data-driven approach enhances decision-making, improves productivity, and enables continuous improvement in manufacturing processes.

In summary, emerging trends in brake motor technology include the adoption of digital control systems, intelligent motor control, network connectivity, condition monitoring, predictive maintenance, energy efficiency optimization, and data analytics. These trends are driving innovation in brake motor technology, improving performance, efficiency, and integration within manufacturing processes. As digital control becomes more prevalent, brake motors are poised to play a vital role in the era of smart manufacturing and industrial automation.

brake motor

How does a brake motor enhance safety in industrial and manufacturing settings?

In industrial and manufacturing settings, brake motors play a crucial role in enhancing safety by providing reliable braking and control mechanisms. These motors are specifically designed to address safety concerns and mitigate potential risks associated with rotating machinery and equipment. Here’s a detailed explanation of how brake motors enhance safety in industrial and manufacturing settings:

1. Controlled Stopping: Brake motors offer controlled stopping capabilities, allowing for precise and predictable deceleration of rotating machinery. This controlled stopping helps prevent abrupt stops or sudden changes in motion, reducing the risk of accidents, equipment damage, and injury to personnel. By providing smooth and controlled stopping, brake motors enhance safety during machine shutdowns, emergency stops, or power loss situations.

2. Emergency Stop Functionality: Brake motors often incorporate emergency stop functionality as a safety feature. In case of an emergency or hazardous situation, operators can activate the emergency stop function to immediately halt the motor and associated machinery. This rapid and reliable stopping capability helps prevent accidents, injuries, and damage to equipment, providing an essential safety measure in industrial environments.

3. Load Holding Capability: Brake motors have the ability to hold loads in position when the motor is not actively rotating. This load holding capability is particularly important for applications where the load needs to be securely held in place, such as vertical lifting mechanisms or inclined conveyors. By preventing unintended movement or drift of the load, brake motors ensure safe operation and minimize the risk of uncontrolled motion that could lead to accidents or damage.

4. Overload Protection: Brake motors often incorporate overload protection mechanisms to safeguard against excessive loads. These protection features can include thermal overload protection, current limiters, or torque limiters. By detecting and responding to overload conditions, brake motors help prevent motor overheating, component failure, and potential hazards caused by overburdened machinery. This protection enhances the safety of personnel and prevents damage to equipment.

5. Failsafe Braking: Brake motors are designed with failsafe braking systems that ensure reliable braking even in the event of power loss or motor failure. These systems can use spring-loaded brakes or electromagnetic brakes that engage automatically when power is cut off or when a fault is detected. Failsafe braking prevents uncontrolled motion and maintains the position of rotating machinery, reducing the risk of accidents, injury, or damage during power interruptions or motor failures.

6. Integration with Safety Systems: Brake motors can be integrated into safety systems and control architectures to enhance overall safety in industrial settings. They can be connected to safety relays, programmable logic controllers (PLCs), or safety-rated drives to enable advanced safety functionalities such as safe torque off (STO) or safe braking control. This integration ensures that the brake motor operates in compliance with safety standards and facilitates coordinated safety measures across the machinery or production line.

7. Compliance with Safety Standards: Brake motors are designed and manufactured in compliance with industry-specific safety standards and regulations. These standards, such as ISO standards or Machinery Directive requirements, define the safety criteria and performance expectations for rotating machinery. By using brake motors that meet these safety standards, industrial and manufacturing settings can ensure a higher level of safety, regulatory compliance, and risk mitigation.

8. Operator Safety: Brake motors also contribute to operator safety by reducing the risk of unintended movement or hazardous conditions. The controlled stopping and load holding capabilities of brake motors minimize the likelihood of unexpected machine behavior that could endanger operators. Additionally, the incorporation of safety features like emergency stop buttons or remote control options provides operators with convenient means to stop or control the machinery from a safe distance, reducing their exposure to potential hazards.

By providing controlled stopping, emergency stop functionality, load holding capability, overload protection, failsafe braking, integration with safety systems, compliance with safety standards, and operator safety enhancements, brake motors significantly enhance safety in industrial and manufacturing settings. These motors play a critical role in preventing accidents, injuries, and equipment damage, contributing to a safer working environment and ensuring the well-being of personnel.

brake motor

How do brake motors ensure controlled and rapid stopping of rotating equipment?

Brake motors are designed to ensure controlled and rapid stopping of rotating equipment by employing specific braking mechanisms. These mechanisms are integrated into the motor to provide efficient and precise stopping capabilities. Here’s a detailed explanation of how brake motors achieve controlled and rapid stopping:

1. Electromagnetic Brakes: Many brake motors utilize electromagnetic brakes as the primary braking mechanism. These brakes consist of an electromagnetic coil and a brake disc or plate. When the power to the motor is cut off or the motor is de-energized, the electromagnetic coil generates a magnetic field that attracts the brake disc or plate, creating friction and halting the rotation of the motor shaft. The strength of the magnetic field and the design of the brake determine the stopping torque and speed, allowing for controlled and rapid stopping of the rotating equipment.

2. Spring-Loaded Brakes: Some brake motors employ spring-loaded brakes. These brakes consist of a spring that applies pressure on the brake disc or plate to create friction and stop the rotation. When the power is cut off or the motor is de-energized, the spring is released, pressing the brake disc against a stationary surface and generating braking force. The spring-loaded mechanism ensures quick engagement of the brake, resulting in rapid stopping of the rotating equipment.

3. Dynamic Braking: Dynamic braking is another technique used in brake motors to achieve controlled stopping. It involves converting the kinetic energy of the rotating equipment into electrical energy, which is dissipated as heat through a resistor or regenerative braking system. When the power is cut off or the motor is de-energized, the motor acts as a generator, and the electrical energy generated by the rotating equipment is converted into heat through the braking system. This dissipation of energy slows down and stops the rotation of the equipment in a controlled manner.

4. Control Systems: Brake motors are often integrated with control systems that enable precise control over the braking process. These control systems allow for adjustable braking torque, response time, and braking profiles, depending on the specific requirements of the application. By adjusting these parameters, operators can achieve the desired level of control and stopping performance, ensuring both safety and operational efficiency.

5. Coordinated Motor and Brake Design: Brake motors are designed with careful consideration of the motor and brake compatibility. The motor’s characteristics, such as torque, speed, and power rating, are matched with the braking system’s capabilities to ensure optimal performance. This coordinated design ensures that the brake can effectively stop the motor within the desired time frame and with the necessary braking force, achieving controlled and rapid stopping of the rotating equipment.

Overall, brake motors employ electromagnetic brakes, spring-loaded brakes, dynamic braking, and control systems to achieve controlled and rapid stopping of rotating equipment. These braking mechanisms, combined with coordinated motor and brake design, enable precise control over the stopping process, ensuring the safety of operators, protecting equipment from damage, and maintaining operational efficiency.

China Best Sales 100W 200W 500W DC Brush Motor with Brake   vacuum pump connector	China Best Sales 100W 200W 500W DC Brush Motor with Brake   vacuum pump connector
editor by CX 2024-05-17