China Custom CHINAMFG Yzpe Electromagnetic Brake Variable Frequency Lifting Metallurgical Motor vacuum pump electric

Product Description

YZPE series metallurgical and hoisting variable frequency speed regulation and braking three-phase asynchronous motor is composed of variable frequency motor and disc type DC electromagnetic power loss brake.
YZPE working principle: when the motor is connected to the power supply and the DC power supply of the brake is connected at the same time, the armature is immediately absorbed to overcome the spring pressure, the brake plate and the brake disc are separated, and the motor rotates. When the power of the motor is cut off, the brake is cut off at the same time, and the brake loses the suction of the elevator, the spring immediately pushes the armature, so that the brake disc is pressed between the brake plate and the armature, and the brake torque is generated, so that the motor stops rotating.

TYPE POWER/KW SPEED r/min
YZP112M-4 4 1415
YZP132S-4 5.5 1450

     Induction CHINAMFG is used for smelting or insulating ferrous metals, non-ferrous metals, sponge iron, such as scrap iron, scrap steel, copper, aluminum and so on. Complete working equipment such as continuous casting machine, rolling mill, mainly used for the production of billet, steel bar, angle steel, H-beam, I-beam, etc. Using KGPS, IGBT, single or double power supply technology, PLC (Siemens) can be realized throughout the monitoring.
 
       Main supply list: 2 sets of electric CHINAMFG body, 2 sets of hydraulic or mechanical tilting electric CHINAMFG mechanism, 1 set of control platform, 1 set of intermediate frequency control cabinet (6 pulse 1, 12 pulse 2, 24 pulse 4), low voltage control cabinet (6 pulse 1, 12 pulse 2, 24 pulse 4), 1 set of capacitor cabinet, 4 or 8 water-cooled cables; 1 water temperature alarm, 1 leakage alarm; 1 crucible mold, 1 liquid One batch of pressure steel pipe, 1 set of copper row, 3 water tanks. Transformer, cooling tower, CHINAMFG builder, CHINAMFG CHINAMFG ejector, CHINAMFG cover.

KGSP Induction Electric Furnace

GW-8-4000-0.5J KGSP Induction Electric Furnace

GW-1-750-1JJ Medium frequency coreless electric furnace

GW-50-22000-0.2J No induction melting furnace

GW-0.25-160-1JJ melting electric furnace

GW-1.5-1000-1J Medium frequency induction furnace

 

NO. Electric 
Furnace 
Type
Input 
power
(KW)
input 
voltage
(V)
Input 
current
(A)
Rated 
power
(KW)
DC 
current
(A)
DC 
voltage
(V)
Melting 
rate
(T/H)
working 
frequency
(HZ)
working 
voltage
(V)
cooling water
 pressure(MPA)
Rated 
capacity
(T)
Power 
consumption
(KWH/T)
Power 
Supply
Furnace 
body
1 GW-0.25-160/1JJ 180 380
(6 Pulse)
256 160 320 500 0.24 1000 750 0.1~0.15 0.25~0.3 0.25 790
2 GW-0.5-250/1JJ 280 380
(6 Pulse)
400 250 500 500 0.4 1000 1500 0.1~0.15 0.25~0.3 0.5 770
3 GW-0.5-250/1J 280 380
(6 Pulse)
400 250 500 500 0.4 1000 1500 0.1~0.15 0.25~0.3 0.5 770
4 GW-0.75-400/1JJ 400 380
(6 Pulse)
650 400 800 500 0.6 1000 1500 0.1~0.15 0.25~0.3 0.75 770
5 GW-0.75-400/1J 400 380
(6 Pulse)
650 400 800 500 0.6 1000 1500 0.1~0.15 0.25~0.3 0.75 770
6 GW-1-500/1JJ 550 380
(6 Pulse)
800 500 1000 500 0.8 1000 1500 0.1~0.15 0.25~0.3 1 750
7 GW-1-750/1JJ 800 380/690
(6 Pulse)
1200/
700
750 1500/
850
500/
880
0.9 1000/
500
1500/
2600
0.1~0.15 0.25~0.3 1 720/660
8 GW-1-750/1J 800 380/690
(6 Pulse)
1200/
700
750 1500/
850
500/
880
0.9 1000/
500
1500/
2600
0.1~0.15 0.25~0.3 1 720/660
9 GW-1.5-1000/0.5JJ 1100 690
(6 Pulse)
912 1000 1140 880 1.2 500 2600 0.1~0.15 0.25~0.3 1.5 700
10 GW-1.5-1000/0.5J 1100 690
(6 Pulse)
912 1000 1140 880 1.2 500 2600 0.1~0.15 0.25~0.3 1.5 700
11 GW-2-1500/0.5JJ 1650 690
(6 Pulse)
1360 1500 1700 880 1.7 500 2600 0.1~0.15 0.25~0.3 2 675
12 GW-2-1500/0.5J 1650 690
(6 Pulse)
1360 1500 1700 880 1.7 500 2600 0.1~0.15 0.25~0.3 2 675
13 GW-2-2000/0.5JJ 2200 690
(6 Pulse)
1400 2000 2275 880 1.9 500 2600 0.1~0.15 0.25~0.3 2 650
14 GW-3-2500/0.5JJ 2750 690/950
(6 Pulse)
2275/
1700
2500 2840/
2080
880/
1250
2.56 500 2600/3200 0.1~0.15 0.25~0.3 3 610/560
15 GW-3-2500/0.5J 2750 690/950
(6 Pulse)
2275/
1700
2500 2840/
2080
880/
1250
2.56 500 2600/3200 0.1~0.15 0.25~0.3 3 610/560
16 GW-4-3000/0.5J 3300 690/950
(6 Pulse)
2730/
2040
3000 3410/
2500
880/
1250
3.2 500 2600/3200 0.1~0.15 0.25~0.3 4 610/560
17 GW-5-4000/0.5J 4400 950
(6 Pulse)
2300 4000 3330 1250 5 500 3400 0.1~0.15 0.25~0.3 5 600/550
18 GW-6-4000/0.5J 4400 950
(12 Pulse)
2300 4000 3330 1250 5 500 3400 0.1~0.15 0.25~0.3 6 600/550
19 GW-8-5000/0.5J 5000 950
(12 Pulse)
3400 5000 4200 1250 7~8 500 3400 0.1~0.15 0.25~0.3 8 600/550
20 GW-10-6000/0.5J 6300 950
(12 Pulse)
3750 6000 4600 1250 8.5~9 500 3400 0.1~0.15 0.25~0.3 10 600/550
21 GW-12-8000/0.25J 8000 950
(12 Pulse)
4900 8000 6000 1250 9~10.5 250 3400 0.1~0.15 0.25~0.3 12 600-550
22 GW-15-8000/0.25J 8000 950
(12 Pulse)
4900 8000 6000 1250 9~10.5 250 3400 0.1~0.15 0.25~0.3 15 600-550
23 GW-15-10000/0.25J 10000 950
(24 Pulse)
6500 10000 8000 1250 13~15 250 3400 0.1~0.15 0.25~0.3 15 600-550
24 GW-18-12000/0.25J 12000 950
(24 Pulse)
8160 12000 10000 1200 15~17 250 3400 0.1~0.15 0.25~0.3 18 600-550
25 GW-20-12000/0.25J 12000 950
(24 Pulse)
8160 12000 10000 1200 17~19 250 3400 0.1~0.15 0.25~0.3 20 600-550
26 GW-25-14000/0.25J 14000 950
(24 Pulse)
9460 14000 11600 1200 19~21 150~200 3400 0.1~0.15 0.25~0.3 25 600-550
27 GW-30-16000/0.2J 16000 950
(24 Pulse)
10850 16000 13300 1200 21~23 150~200 3400 0.1~0.15 0.25~0.3 30 600-550
28 GW-40-20000/0.2J 20000 950
(24 Pulse)
13545 20000 16600 1200 25~27 150~200 3400 0.1~0.15 0.25~0.3 40 600-550
29 GW-50-22000/0.2J 22000 950
(24 Pulse)
14932 22000 18300 1200 25~28 150~200 3400 0.1~0.15 0.25~0.3 50 600-550

Note:
(1) GW – means medium frequency induction furnace, – 1 – means induction CHINAMFG capacity of 1 ton, – 500 – means CHINAMFG rated power of 500 KW, / 1 – means CHINAMFG operating frequency of 1000 Hz, / 0.5 – means melting CHINAMFG frequency of 500 Hz, – J – means hydraulic tilting CHINAMFG (furnace shell is steel shell), – JJ – means mechanical tilting furnace. (the shell of the CHINAMFG is aluminum alloy).

(2) The above quoted price is for routine configuration. Other configurations can be added, such as leak alarm, water temperature alarm, CHINAMFG switch, cover mechanism, CHINAMFG ejector and transformer, cooling device (open and close cooling tower, closed cooling tower, plate heat exchanger)

3) If necessary, send technicians to carry out the commissioning: the domestic section is free; the overseas section travel expenses, accommodation and food are borne by the user and each person is subsidized 150 US dollars per day.

4) I quote EX-W at a price including simple packing, including shipping charges to ZheJiang port area and all inland charges in China.

V) The above electric CHINAMFG voltage levels are 380V, 690V and 950/1000V, and the frequency is 50HZ. If the user equipment requirements are different from the above voltage levels and frequencies, each item needs to be increased by 15000USD. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Operating Speed: Constant Speed
Number of Stator: Three-Phase
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

brake motor

Can brake motors be used in conjunction with other motion control methods?

Yes, brake motors can be used in conjunction with other motion control methods to achieve precise and efficient control over mechanical systems. Brake motors provide braking functionality, while other motion control methods offer various means of controlling the speed, position, and acceleration of the system. Combining brake motors with other motion control methods allows for enhanced overall system performance and versatility. Here’s a detailed explanation of how brake motors can be used in conjunction with other motion control methods:

  • Variable Frequency Drives (VFDs): Brake motors can be used in conjunction with VFDs, which are electronic devices that control the speed and torque of an electric motor. VFDs enable precise speed control, acceleration, and deceleration of the motor by adjusting the frequency and voltage supplied to the motor. By incorporating a brake motor with a VFD, the system benefits from both the braking capability of the motor and the advanced speed control provided by the VFD.
  • Servo Systems: Servo systems are motion control systems that utilize servo motors and feedback mechanisms to achieve highly accurate control over position, velocity, and torque. In certain applications where rapid and precise positioning is required, brake motors can be used in conjunction with servo systems. The brake motor provides the braking function when the system needs to hold position or decelerate rapidly, while the servo system controls the dynamic motion and positioning tasks.
  • Stepper Motor Control: Stepper motors are widely used in applications that require precise control over position and speed. Brake motors can be utilized alongside stepper motor control systems to provide braking functionality when the motor needs to hold position or prevent undesired movement. This combination allows for improved stability and control over the stepper motor system, especially in applications where holding torque and quick deceleration are important.
  • Hydraulic or Pneumatic Systems: In some industrial applications, hydraulic or pneumatic systems are used for motion control. Brake motors can be integrated into these systems to provide additional braking capability when needed. For example, a brake motor can be employed to hold a specific position or provide emergency braking in a hydraulic or pneumatic actuator system, enhancing safety and control.
  • Control Algorithms and Systems: Brake motors can also be utilized in conjunction with various control algorithms and systems to achieve specific motion control objectives. These control algorithms can include closed-loop feedback control, PID (Proportional-Integral-Derivative) control, or advanced motion control algorithms. By incorporating a brake motor into the system, the control algorithms can utilize the braking functionality to enhance overall system performance and stability.

The combination of brake motors with other motion control methods offers a wide range of possibilities for achieving precise, efficient, and safe control over mechanical systems. Whether it is in conjunction with VFDs, servo systems, stepper motor control, hydraulic or pneumatic systems, or specific control algorithms, brake motors can complement and enhance the functionality of other motion control methods. This integration allows for customized and optimized control solutions to meet the specific requirements of diverse applications.

brake motor

How do brake motors contribute to the efficiency of conveyor systems and material handling?

Brake motors play a crucial role in enhancing the efficiency of conveyor systems and material handling operations. They provide several advantages that improve the overall performance and productivity of these systems. Here’s a detailed explanation of how brake motors contribute to the efficiency of conveyor systems and material handling:

  • Precise Control: Brake motors offer precise control over the movement of conveyor systems. The braking mechanism allows for quick and accurate stopping, starting, and positioning of the conveyor belt or other material handling components. This precise control ensures efficient operation, minimizing the time and effort required to handle materials and reducing the risk of damage or accidents.
  • Speed Regulation: Brake motors can regulate the speed of conveyor systems, allowing operators to adjust the conveying speed according to the specific requirements of the materials being handled. This speed control capability enables efficient material flow, optimizing production processes and preventing bottlenecks or congestion. It also contributes to better synchronization with upstream or downstream processes, improving overall system efficiency.
  • Load Handling: Brake motors are designed to handle varying loads encountered in material handling applications. They provide the necessary power and torque to move heavy loads along the conveyor system smoothly and efficiently. The braking mechanism ensures safe and controlled stopping even with substantial loads, preventing excessive wear or damage to the system and facilitating efficient material transfer.
  • Energy Efficiency: Brake motors are engineered for energy efficiency, contributing to cost savings and sustainability in material handling operations. They are designed to minimize energy consumption during operation by optimizing motor efficiency, reducing heat losses, and utilizing regenerative braking techniques. Energy-efficient brake motors help lower electricity consumption, resulting in reduced operating costs and a smaller environmental footprint.
  • Safety Enhancements: Brake motors incorporate safety features that enhance the efficiency of conveyor systems and material handling by safeguarding personnel and equipment. They are equipped with braking systems that provide reliable stopping power, preventing unintended motion or runaway loads. Emergency stop functionality adds an extra layer of safety, allowing immediate halting of the system in case of emergencies or hazards, thereby minimizing the potential for accidents and improving overall operational efficiency.
  • Reliability and Durability: Brake motors are constructed to withstand the demanding conditions of material handling environments. They are designed with robust components and built-in protection features to ensure reliable operation even in harsh or challenging conditions. The durability of brake motors reduces downtime due to motor failures or maintenance issues, resulting in improved system efficiency and increased productivity.
  • Integration and Automation: Brake motors can be seamlessly integrated into automated material handling systems, enabling efficient and streamlined operations. They can be synchronized with control systems and sensors to optimize material flow, automate processes, and enable efficient sorting, routing, or accumulation of items. This integration and automation capability enhances system efficiency, reduces manual intervention, and enables real-time monitoring and control of the material handling process.
  • Maintenance and Serviceability: Brake motors are designed for ease of maintenance and serviceability, which contributes to the overall efficiency of conveyor systems and material handling operations. They often feature modular designs that allow quick and easy replacement of components, minimizing downtime during maintenance or repairs. Accessible lubrication points, inspection ports, and diagnostic features simplify routine maintenance tasks, ensuring that the motors remain in optimal working condition and maximizing system uptime.

By providing precise control, speed regulation, reliable load handling, energy efficiency, safety enhancements, durability, integration with automation systems, and ease of maintenance, brake motors significantly contribute to the efficiency of conveyor systems and material handling operations. Their performance and features optimize material flow, reduce downtime, enhance safety, lower operating costs, and improve overall productivity in a wide range of industries and applications.

brake motor

How do brake motors handle variations in load and stopping requirements?

Brake motors are designed to handle variations in load and stopping requirements by incorporating specific features and mechanisms that allow for flexibility and adaptability. These features enable brake motors to effectively respond to changes in load conditions and meet the diverse stopping requirements of different applications. Here’s a detailed explanation of how brake motors handle variations in load and stopping requirements:

1. Adjustable Braking Torque: Brake motors often have adjustable braking torque, allowing operators to modify the stopping force according to the specific load requirements. By adjusting the braking torque, brake motors can accommodate variations in load size, weight, and inertia. Higher braking torque can be set for heavier loads, while lower braking torque can be selected for lighter loads, ensuring optimal stopping performance and preventing excessive wear or damage to the braking system.

2. Controlled Response Time: Brake motors provide controlled response times, allowing for precise and efficient stopping according to the application requirements. The response time refers to the duration between the command to stop and the actual cessation of rotation. Brake motors can be designed with adjustable response times, enabling operators to set the desired stopping speed based on the load characteristics and safety considerations. This flexibility ensures that the braking action is appropriately matched to the load and stopping requirements.

3. Dynamic Braking: Dynamic braking is a feature found in some brake motors that helps handle variations in load and stopping requirements. When the motor is de-energized, dynamic braking converts the kinetic energy of the rotating load into electrical energy, which is dissipated as heat through a resistor or regenerative braking system. This braking mechanism allows brake motors to handle different load conditions and varying stopping requirements, dissipating excess energy and bringing the rotating equipment to a controlled stop.

4. Integrated Control Systems: Brake motors often come equipped with integrated control systems that allow for customized programming and adjustment of the braking parameters. These control systems enable operators to adapt the braking performance based on the load characteristics and stopping requirements. By adjusting parameters such as braking torque, response time, and braking profiles, brake motors can handle variations in load and achieve the desired stopping performance for different applications.

5. Monitoring and Feedback: Some brake motor systems incorporate monitoring and feedback mechanisms to provide real-time information about the load conditions and stopping performance. This feedback can include data on motor temperature, current consumption, or position feedback from encoders or sensors. By continuously monitoring these parameters, brake motors can dynamically adjust their braking action to accommodate variations in load and ensure optimal stopping performance.

6. Adaptable Brake Design: Brake motors are designed with consideration for load variations and stopping requirements. The brake design takes into account factors such as braking surface area, material composition, and cooling methods. These design features allow brake motors to handle different load conditions effectively and provide consistent and reliable stopping performance under varying circumstances.

By incorporating adjustable braking torque, controlled response time, dynamic braking, integrated control systems, monitoring and feedback mechanisms, and adaptable brake designs, brake motors can handle variations in load and stopping requirements. These features enhance the versatility and performance of brake motors, making them suitable for a wide range of applications across different industries.

China Custom CHINAMFG Yzpe Electromagnetic Brake Variable Frequency Lifting Metallurgical Motor   vacuum pump electricChina Custom CHINAMFG Yzpe Electromagnetic Brake Variable Frequency Lifting Metallurgical Motor   vacuum pump electric
editor by CX 2024-04-12