Product Description
Product Description
YEJ2 series electromatic-brake motors are improved products on the base of YEJ series. The technical properties of its motor conform to htere quirements of Y2 series. The performance of the brake assembly are improved. YEJ2 can make action proptly when the power of electric motor is off.
Motors of this series can continuously run at the rated power under the following conditions:
1. Altitude: Above sea level, not exceeding 1000m.
2. Ambient temperature: It varies with seasons but not exceeding +40° C
3. Voltage: 220/380V, 380/660V
4. Frequency: 50Hz, 60Hz.
5. Connection: Y-Connection for 3kw and below whereas; Delta-connection for 4 kw and above.
6. Duty: Continuous(S1)
7. Insulation Class: B, F
8. Protection: IP44, IP55 or IP54
Technical data-YEJ series motor-2 poles -380v/50HZ | |||||||||
type | Rated output | Full Load | Static braking torque | Max.braking time at No-load | Brake power | ||||
Speed | Input Current | Efficiency | PowTypeer factor | ||||||
KW | HP | RPM | Amp | Eff.% | P.F | N.m | S | W | |
YEJ80M1-2 | 0.75 | 1.0 | 2825 | 1.81 | 75 | 0.84 | 7.5 | 0.20 | 50 |
YEJ80M2-2 | 1.1 | 1.5 | 2825 | 2.52 | 77 | 0.86 | 7.5 | 0.20 | 50 |
YEJ90S-2 | 1.5 | 2.0 | 2840 | 3.44 | 78 | 0.85 | 15 | 0.20 | 60 |
YEJ90L-2 | 2.2 | 3.0 | 2840 | 4.83 | 80.5 | 0.86 | 15 | 0.20 | 60 |
YEJ100L-2 | 3 | 4.0 | 2870 | 6.39 | 82 | 0.87 | 30 | 0.20 | 80 |
YEJ112M-2 | 4 | 5.5 | 2880 | 8.17 | 85.5 | 0.87 | 40 | 0.25 | 110 |
YEJ132S1-2 | 5.5 | 7.5 | 2900 | 11.10 | 85.5 | 0.88 | 75 | 0.25 | 130 |
YEJ132S2-2 | 7.5 | 10.0 | 2900 | 15.00 | 86.2 | 0.88 | 75 | 0.25 | 130 |
YEJ160M1-2 | 11 | 15 | 2930 | 21.80 | 87.2 | 0.88 | 150 | 0.35 | 150 |
YEJ160M2-2 | 15 | 20 | 2930 | 29.40 | 88.2 | 0.88 | 150 | 0.35 | 150 |
YEJ160L-2 | 18.5 | 25 | 2930 | 35.50 | 89.0 | 0.89 | 150 | 0.35 | 150 |
YEJ180M-2 | 22 | 30 | 2940 | 42.20 | 89.0 | 0.89 | 200 | 0.35 | 150 |
YEJ200L1-2 | 30 | 40 | 2950 | 56.90 | 90.0 | 0.89 | 300 | 0.45 | 200 |
YEJ200L2-2 | 37 | 50 | 2950 | 69.80 | 90.5 | 0.89 | 300 | 0.45 | 200 |
YEJ225M-2 | 45 | 60 | 2960 | 83.90 | 91.5 | 0.89 | 450 | 0.45 | 200 |
Technical data-YEJ series motor-4 poles -380v/50HZ | |||||||||
Type | Rated output | Full Load | Static braking torque | Max.braking time at No-load | Brake power | ||||
Speed | Input Current | Efficiency | Power factor | ||||||
KW | HP | RPM | Amp | Eff.% | P.F | N.m | S | W | |
YEJ80M1-4 | 0.55 | 0.75 | 1390 | 1.51 | 73.0 | 0.76 | 7.5 | 0.20 | 50 |
YEJ80M2-4 | 0.75 | 1.0 | 1390 | 2.01 | 74.5 | 0.76 | 7.5 | 0.20 | 50 |
YEJ90S-4 | 1.1 | 1.5 | 1400 | 2.75 | 78.0 | 0.78 | 15 | 0.20 | 60 |
YEJ90L-4 | 1.5 | 2.0 | 1400 | 3.65 | 79.0 | 0.79 | 15 | 0.20 | 60 |
YEJ100L1-4 | 2.2 | 3.0 | 1420 | 5.03 | 81.0 | 0.82 | 30 | 0.20 | 80 |
JET100L2-4 | 3.0 | 4.0 | 1420 | 6.82 | 82.5 | 0.81 | 30 | 0.20 | 80 |
YEJ112M-4 | 4.0 | 5.5 | 1440 | 8.77 | 84.5 | 0.82 | 40 | 0.25 | 110 |
YEJ132S-4 | 5.5 | 7.5 | 1440 | 11.60 | 85.5 | 0.84 | 75 | 0.25 | 130 |
YEJ132M-4 | 7.5 | 10.0 | 1440 | 15.40 | 87.0 | 0.85 | 75 | 0.25 | 130 |
YEJ160M-4 | 11 | 15 | 1460 | 22.60 | 88.0 | 0.84 | 150 | 0.35 | 150 |
YEJ160L-4 | 15 | 20 | 1460 | 30.30 | 88.5 | 0.85 | 150 | 0.35 | 150 |
YEJ180M-4 | 18.5 | 25 | 1465 | 35.90 | 91.0 | 0.86 | 200 | 0.35 | 150 |
YEJ180L-4 | 22 | 30 | 1465 | 42.50 | 91.5 | 0.86 | 200 | 0.35 | 150 |
YEJ200L-4 | 30 | 40 | 1470 | 56.80 | 92.2 | 0.87 | 300 | 0.45 | 200 |
YEJ225S-4 | 37 | 50 | 1475 | 70.40 | 91.8 | 0.87 | 450 | 0.45 | 200 |
YEJ225M-4 | 45 | 60 | 1475 | 84.20 | 92.3 | 0.88 | 450 | 0.45 | 200 |
Technical data-YEJ series motor-6 poles -380v/50HZ | |||||||||
Type | Rated output | Full Load | Static braking torque | Max.braking time at No-load | Brake power | ||||
Speed | Input Current | Efficiency | Power factor | ||||||
KW | HP | RPM | Amp | Eff.% | P.F | N.m | S | W | |
YEJ90S-6 | 0.75 | 1.0 | 910 | 2.25 | 72.5 | 0.7 | 15 | 0.2 | 60 |
YEJ90L-6 | 1.1 | 1.5 | 910 | 3.16 | 73.5 | 0.72 | 15 | 0.2 | 60 |
YEJ100L-6 | 1.5 | 2.0 | 930 | 3.97 | 77.5 | 0.74 | 30 | 0.2 | 80 |
YEJ112M-6 | 2.2 | 3.0 | 940 | 5.61 | 80.5 | 0.74 | 40 | 0.25 | 110 |
YEJ132S-6 | 3.0 | 4.0 | 960 | 7.23 | 83.0 | 0.76 | 75 | 0.25 | 130 |
YEJ132M1-6 | 4.0 | 5.5 | 960 | 9.40 | 84.0 | 0.77 | 75 | 0.25 | 130 |
YEJ132M2-6 | 5.5 | 7.5 | 960 | 12.60 | 85.3 | 0.78 | 75 | 0.25 | 130 |
YEJ160M-6 | 7.5 | 10.0 | 970 | 17.00 | 86.0 | 0.78 | 150 | 0.35 | 150 |
YEJ160L-6 | 11 | 15 | 970 | 24.60 | 87.0 | 0.78 | 150 | 0.35 | 150 |
YEJ180L-6 | 15 | 20 | 970 | 31.40 | 89.5 | 0.81 | 200 | 0.35 | 150 |
YEJ200L1-6 | 18.5 | 25 | 975 | 37.70 | 89.8 | 0.83 | 300 | 0.45 | 200 |
YEJ200L2-6 | 22 | 30 | 975 | 44.60 | 90.2 | 0.83 | 300 | 0.45 | 200 |
YEJ225M-6 | 30 | 40 | 980 | 59.50 | 92.2 | 0.85 | 450 | 0.45 | 200 |
Detailed Photos
Our Advantages
We have more than 30years on all kinds of ac motors and gearmotor ,worm reducers producing ,nice price
What we do:
1.Stamping of lamination
2.Rotor die-casting
3.Winding and inserting – both manual and semi-automatically
4.Vacuum varnishing
5.Machining shaft, housing, end shields, etc…
6.Rotor balancing
7.Painting – both wet paint and powder coating
8.assembly
9.Packing
10.Inspecting spare parts every processing
11.100% test after each process and final test before packing.,
FAQ
Q: Do you offer OEM service?
A: Yes
Q: What is your payment term?
A: 30% T/T in advance, 70% balance when receiving B/L copy. Or irrevocable L/C.
Q: What is your lead time?
A: About 30 days after receiving deposit or original L/C.
Q: What certifiicates do you have?
A: We have CE, ISO. And we can apply for specific certificate for different country such as SONCAP for Nigeria, COI for Iran, SASO for Saudi Arabia, etc.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Application: | Industrial ,Universal ,etc |
---|---|
Speed: | Constant Speed |
Number of Stator: | Three-Phase |
Function: | Control |
Casing Protection: | Protection Type |
Number of Poles: | 2.4.6.8p |
Samples: |
US$ 92/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
How do brake motors ensure smooth and controlled movement in equipment?
Brake motors play a crucial role in ensuring smooth and controlled movement in equipment by providing reliable braking functionality. They work in coordination with the motor and other control systems to achieve precise control over the motion of the equipment. Here’s a detailed explanation of how brake motors ensure smooth and controlled movement in equipment:
- Braking Capability: Brake motors are specifically designed to provide effective braking capability. When the power to the motor is cut off or when a braking signal is applied, the brake system engages, generating frictional forces that slow down and bring the equipment to a controlled stop. The brake torque generated by the motor helps prevent coasting or unintended movement, ensuring smooth and controlled deceleration.
- Quick Response Time: Brake motors are engineered to have a quick response time, meaning that the brake engages rapidly once the control signal is applied. This quick response time allows for prompt and precise control over the movement of the equipment. By minimizing the delay between the initiation of the braking action and the actual engagement of the brake, brake motors contribute to smooth and controlled movement.
- Adjustable Brake Torque: Brake motors often offer the ability to adjust the brake torque to suit the specific requirements of the equipment and application. The brake torque can be tailored to the load characteristics and operating conditions to achieve optimal braking performance. By adjusting the brake torque, brake motors ensure that the equipment decelerates smoothly and consistently, avoiding abrupt stops or jerky movements.
- Brake Release Mechanisms: In addition to providing braking action, brake motors incorporate mechanisms to release the brake when the equipment needs to resume motion. These release mechanisms can be controlled manually or automatically, depending on the application. The controlled release of the brake ensures that the equipment starts moving smoothly and gradually, allowing for controlled acceleration.
- Integration with Control Systems: Brake motors are integrated into the overall control systems of the equipment to achieve coordinated and synchronized movement. They work in conjunction with motor control devices, such as variable frequency drives (VFDs) or servo systems, to precisely control the speed, acceleration, and deceleration of the equipment. By seamlessly integrating with the control systems, brake motors contribute to the smooth and controlled movement of the equipment.
- Compliance with Safety Standards: Brake motors are designed and manufactured in compliance with safety standards and regulations. They undergo rigorous testing and quality control measures to ensure reliable and consistent braking performance. By adhering to safety standards, brake motors help prevent sudden or uncontrolled movements that could pose a safety risk and ensure the equipment operates within acceptable limits.
By providing effective braking capability, quick response time, adjustable brake torque, release mechanisms, integration with control systems, and compliance with safety standards, brake motors ensure smooth and controlled movement in equipment. They enable precise control over the deceleration, stopping, and starting of the equipment, enhancing operational efficiency, safety, and overall performance.
What maintenance practices are essential for extending the lifespan of a brake motor?
Maintaining a brake motor properly is crucial for extending its lifespan and ensuring optimal performance. Regular maintenance practices help prevent premature wear, identify potential issues, and address them promptly. Here are some essential maintenance practices for extending the lifespan of a brake motor:
- Cleanliness: Keeping the brake motor clean is important to prevent the accumulation of dirt, dust, or debris that can affect its performance. Regularly inspect the motor and clean it using appropriate cleaning methods and materials, ensuring that the power is disconnected before performing any cleaning tasks.
- Lubrication: Proper lubrication of the brake motor’s moving parts is essential to minimize friction and reduce wear and tear. Follow the manufacturer’s recommendations regarding the type of lubricant to use and the frequency of lubrication. Ensure that the lubrication points are accessible and apply the lubricant in the recommended amounts.
- Inspection: Regular visual inspections of the brake motor are necessary to identify any signs of damage, loose connections, or abnormal wear. Check for any loose or damaged components, such as bolts, cables, or connectors. Inspect the brake pads or discs for wear and ensure they are properly aligned. If any issues are detected, take appropriate action to address them promptly.
- Brake Adjustment: Periodically check and adjust the brake mechanism of the motor to ensure it maintains proper braking performance. This may involve adjusting the brake pads, ensuring proper clearance, and verifying that the braking force is sufficient. Improper brake adjustment can lead to excessive wear, reduced stopping power, or safety hazards.
- Temperature Monitoring: Monitoring the operating temperature of the brake motor is important to prevent overheating and thermal damage. Ensure that the motor is not subjected to excessive ambient temperatures or overloaded conditions. If the motor becomes excessively hot, investigate the cause and take corrective measures, such as improving ventilation or reducing the load.
- Vibration Analysis: Periodic vibration analysis can help detect early signs of mechanical problems or misalignment in the brake motor. Using specialized equipment or vibration monitoring systems, measure and analyze the motor’s vibration levels. If abnormal vibrations are detected, investigate and address the underlying issues to prevent further damage.
- Electrical Connections: Regularly inspect the electrical connections of the brake motor to ensure they are secure and free from corrosion. Loose or faulty connections can lead to power issues, motor malfunctions, or electrical hazards. Tighten any loose connections and clean any corrosion using appropriate methods and materials.
- Testing and Calibration: Perform periodic testing and calibration of the brake motor to verify its performance and ensure it operates within the specified parameters. This may involve conducting load tests, verifying braking force, or checking the motor’s speed and torque. Follow the manufacturer’s guidelines or consult with qualified technicians for proper testing and calibration procedures.
- Documentation and Record-keeping: Maintain a record of all maintenance activities, inspections, repairs, and any relevant information related to the brake motor. This documentation helps track the maintenance history, identify recurring issues, and plan future maintenance tasks effectively. It also serves as a reference for warranty claims or troubleshooting purposes.
- Professional Servicing: In addition to regular maintenance tasks, consider scheduling professional servicing and inspections by qualified technicians. They can perform comprehensive checks, identify potential issues, and perform specialized maintenance procedures that require expertise or specialized tools. Professional servicing can help ensure thorough maintenance and maximize the lifespan of the brake motor.
By following these essential maintenance practices, brake motor owners can enhance the lifespan of the motor, reduce the risk of unexpected failures, and maintain its optimal performance. Regular maintenance not only extends the motor’s lifespan but also contributes to safe operation, energy efficiency, and overall reliability.
What industries and applications commonly use brake motors?
Brake motors find wide-ranging applications across various industries that require controlled stopping, load holding, and precise positioning. Here’s a detailed overview of the industries and applications commonly using brake motors:
1. Material Handling: Brake motors are extensively used in material handling equipment such as cranes, hoists, winches, and conveyors. These applications require precise control over the movement of heavy loads, and brake motors provide efficient stopping and holding capabilities, ensuring safe and controlled material handling operations.
2. Elevators and Lifts: The vertical movement of elevators and lifts demands reliable braking systems to hold the load in position during power outages or when not actively driving the movement. Brake motors are employed in elevator systems to ensure passenger safety and prevent unintended movement or freefall of the elevator car.
3. Machine Tools: Brake motors are used in machine tools such as lathes, milling machines, drilling machines, and grinders. These applications often require precise positioning and rapid stopping of rotating spindles or cutting tools. Brake motors provide the necessary control and safety measures for efficient machining operations.
4. Conveyor Systems: Conveyor systems in industries like manufacturing, logistics, and warehouses utilize brake motors to achieve accurate control over the movement of goods. Brake motors enable smooth acceleration, controlled deceleration, and precise stopping of conveyor belts, ensuring proper material flow and minimizing the risk of collisions or product damage.
5. Crushers and Crushers: In industries such as mining, construction, and aggregates, brake motors are commonly used in crushers and crushers. These machines require rapid and controlled stopping to prevent damage caused by excessive vibration or unbalanced loads. Brake motors provide the necessary braking force to halt the rotation of crusher components quickly.
6. Robotics and Automation: Brake motors play a vital role in robotics and automation systems that require precise movement control and positioning. They are employed in robotic arms, automated assembly lines, and pick-and-place systems to achieve accurate and repeatable movements, ensuring seamless operation and high productivity.
7. Printing and Packaging: Brake motors are utilized in printing presses, packaging machines, and labeling equipment. These applications require precise control over the positioning of materials, accurate registration, and consistent stopping during printing or packaging processes. Brake motors ensure reliable performance and enhance the quality of printed and packaged products.
8. Textile Machinery: Brake motors are commonly found in textile machinery such as spinning machines, looms, and textile printing equipment. These applications demand precise control over yarn tension, fabric movement, and position holding. Brake motors offer the necessary braking force and control for smooth textile manufacturing processes.
9. Food Processing: Brake motors are employed in food processing equipment, including mixers, slicers, extruders, and dough handling machines. These applications require precise control over mixing, slicing, and shaping processes, as well as controlled stopping to ensure operator safety and prevent product wastage.
These are just a few examples, and brake motors are utilized in numerous other industries and applications where controlled stopping, load holding, and precise positioning are essential. The versatility and reliability of brake motors make them a preferred choice in various industrial sectors, contributing to enhanced safety, productivity, and operational control.
editor by CX 2024-05-16