Product Description
Product Description
Three-Phase Motor is an electric motor driven by a three-phase AC power source.
They are widely used as power sources for industrial equipment and machinery. Also called three-phase induction motors (induction motors), they are generally powered by a three-phase AC power supply of 200 V, 110V, 380V and so on.
Three-Phase Motors consist of a stator, rotor, output shaft, flange bracket, and ball bearings.
YEJ Brake Motor Series
Brake motor is made of 2 parts: three-phase asynchronous motors and brake, it belongs to three-phase-asynchronous motor derived series. Manual brake release and bolt release are 2 forms of brake. Brake is the main components of the brake motor. Its working power divided into 2 categories: One is AC braking, the other is DC braking. Our company produces brake motors are DC brake motors, the advantage of the braking torque is below, easy installation, braking response speed, high reliability, versatility and other advantages.
To the Ac power to the brake coil is provided with suction cups for low voltage winding rated DC voltage. A single-phase AC power is rectified then supply to a sucker winding to make it work so the brake motor terminal box fitted with a rectifier, wiring diagram below.
Brake motor braking time (t) is the time from the motor and brake stopping the power to the shaft completely stopped, under normal circumstances, for 63 to 880 frame size motor, the braking time is 0.5 seconds. For o-132 frame size motor the braking time is 1 second, For 160 to180 frame size motor, the braking time is 2 seconds.
Operating conditions:
Ambient temperature: | -15ºC<0<40ºC | Duty: | S1 (continuous) |
Altitude: | not exceed1000m | Insulation class: | B/F/H |
Rated voltage: | 380V, 220V-760Vis available | Protection class: | lP54/IP55 |
Rated frequency: | 50HZ/60HZ | Cooling method: | IC0141 |
Production Flow:
Product Overall & Installation Dimensions:
YEJ B3 Series H63-180:
Frame size | Installation Dimensions (mm) | ||||||||||||
A | B | C | D | E | F | G | H | K | AB | AC | HD | L | |
63 | 100 | 80 | 40 | Φ11 | 23 | 4 | 12.5 | 63 | Φ7 | 135 | 120×120 | 167 | 255 |
71 | 112 | 90 | 45 | Φ14 | 30 | 5 | 16 | 71 | Φ7 | 137 | 130×130 | 178 | 305 |
80M | 125 | 100 | 50 | Φ19 | 40 | 6 | 21.5 | 80 | Φ10 | 155 | 145×145 | 190 | 340 |
90S | 140 | 100 | 56 | Φ24 | 50 | 8 | 27 | 90 | Φ10 | 175 | 160×160 | 205 | 400 |
90L | 140 | 125 | 56 | Φ24 | 50 | 8 | 27 | 90 | Φ10 | 175 | 160×160 | 205 | 400 |
100L | 160 | 140 | 63 | Φ28 | 60 | 8 | 31 | 100 | Φ12 | 200 | 185×185 | 240 | 440 |
112M | 190 | 140 | 70 | Φ28 | 60 | 8 | 31 | 112 | Φ12 | 230 | 200×200 | 270 | 480 |
132S | 216 | 140 | 89 | Φ38 | 80 | 10 | 41 | 132 | Φ12 | 270 | 245×245 | 315 | 567 |
132M | 216 | 178 | 89 | Φ38 | 80 | 10 | 41 | 132 | Φ12 | 270 | 245×245 | 315 | 567 |
160M | 254 | 210 | 108 | Φ42 | 110 | 12 | 45 | 160 | Φ14.5 | 320 | 335×335 | 450 | 780 |
160L | 254 | 254 | 108 | Φ42 | 110 | 12 | 45 | 160 | Φ14.5 | 320 | 335×335 | 450 | 780 |
180M | 279 | 241 | 121 | Φ48 | 110 | 14 | 51.5 | 180 | Φ14.5 | 355 | 370×370 | 500 | 880 |
180L | 279 | 279 | 121 | Φ48 | 110 | 14 | 51.5 | 180 | Φ14.5 | 355 | 370×370 | 500 | 880 |
YEJ B5 Series H63-180:
Frame size | Installation Dimensions (mm) | |||||||||||
D | E | F | G | M | N | P | S | T | AC | HD | L | |
63 | Φ11 | 23 | 4 | 12.5 | 115 | 95 | 140 | 10 | 3 | 120×120 | 104 | 255 |
71 | Φ14 | 30 | 5 | 16 | 130 | 110 | 160 | 10 | 3 | 130×130 | 107 | 305 |
80M | Φ19 | 40 | 6 | 21.5 | 165 | 130 | 200 | 12 | 3.5 | 145×145 | 115 | 340 |
90S | Φ24 | 50 | 8 | 27 | 165 | 130 | 200 | 12 | 3.5 | 160×160 | 122 | 400 |
90L | Φ24 | 50 | 8 | 27 | 165 | 130 | 200 | 12 | 3.5 | 160×160 | 122 | 400 |
100L | Φ28 | 60 | 8 | 31 | 215 | 180 | 250 | 14.5 | 4 | 185×185 | 137 | 440 |
112M | Φ28 | 60 | 8 | 31 | 215 | 180 | 250 | 14.5 | 4 | 200×200 | 155 | 480 |
132S | Φ38 | 80 | 10 | 41 | 265 | 230 | 300 | 14.5 | 4 | 245×245 | 180 | 567 |
132M | Φ38 | 80 | 10 | 41 | 265 | 230 | 300 | 14.5 | 4 | 245×245 | 180 | 567 |
160M | Φ42 | 110 | 12 | 45 | 300 | 250 | 350 | 18.5 | 5 | 320×320 | 290 | 780 |
160L | Φ42 | 110 | 12 | 45 | 300 | 250 | 350 | 18.5 | 5 | 320×320 | 290 | 780 |
180M | Φ48 | 110 | 14 | 51.5 | 300 | 250 | 350 | 18.5 | 5 | 360×360 | 340 | 880 |
180L | Φ48 | 110 | 14 | 51.5 | 300 | 250 | 350 | 18.5 | 5 | 360×360 | 340 | 880 |
YEJ B14 Series H63-112:
Frame size | Installation Dimensions (mm) | |||||||||||
D | E | F | G | M | N | P | S | T | AC | HD | L | |
63 | Φ11 | 23 | 4 | 12.5 | 75 | 60 | 90 | M5 | 2.5 | 120×120 | 104 | 255 |
71 | Φ14 | 30 | 5 | 16 | 85 | 70 | 105 | M6 | 2.5 | 130×130 | 107 | 305 |
80 | Φ19 | 40 | 6 | 21.5 | 100 | 80 | 110 | M6 | 3 | 145×145 | 115 | 340 |
90S | Φ24 | 50 | 8 | 27 | 115 | 95 | 120 | M8 | 3 | 160×160 | 122 | 400 |
90L | Φ24 | 50 | 8 | 27 | 115 | 95 | 120 | M8 | 3 | 160×160 | 122 | 400 |
100L | Φ28 | 60 | 8 | 31 | 130 | 110 | 155 | M8 | 3.5 | 185×185 | 137 | 440 |
112M | Φ28 | 60 | 8 | 31 | 130 | 110 | 160 | M8 | 3.5 | 200×200 | 155 | 480 |
Product Parameters
YEJ 3000r/min 380V 50Hz:
TYPE | RATED OUTPUT | RATED SPEED | EFFICENCY | POWER FOCTOR | RATED CURRENT | RATED TORQUE | LOCKED ROTOR TORQUE | MAXIMUM TORQUE | STATIC BRAKE TCRQUE | BRAKE TIME |
RATED TORQUE | RATED TORQUE | DC | ||||||||
KW | rpm | η% | COSφ | A | Nm | Ts/Tn | Tmax/Tn | NM | S | |
YEJ-631-2 | 0.18 | 2800 | 65.0 | 0.80 | 0.53 | 0.61 | 2.2 | 2.2 | 3.5 | 0.10 |
YEJ-632-2 | 0.25 | 2800 | 68.0 | 0.81 | 0.69 | 0.85 | 2.2 | 2.2 | 3.5 | 0.10 |
YEJ-711-2 | 0.37 | 2830 | 70.0 | 0.81 | 0.99 | 1.25 | 2.2 | 2.2 | 4.0 | 0.10 |
YEJ-712-2 | 0.55 | 2830 | 73.0 | 0.82 | 1.40 | 1.86 | 2.2 | 2.3 | 4.0 | 0.10 |
YEJ-801-2 | 0.75 | 2840 | 75.0 | 0.83 | 1.83 | 2.52 | 2.2 | 2.3 | 7.5 | 0.10 |
YEJ-802-2 | 1.10 | 2840 | 77.0 | 0.84 | 2.55 | 3.70 | 2.2 | 2.3 | 7.5 | 0.10 |
YEJ-90S-2 | 1.50 | 2840 | 79.0 | 0.84 | 3.39 | 5.04 | 2.2 | 2.3 | 15 | 0.15 |
YEJ-90L-2 | 2.20 | 2840 | 81.0 | 0.85 | 4.80 | 7.40 | 2.2 | 2.3 | 15 | 0.15 |
YEJ-100L1-2 | 3.00 | 2860 | 83.0 | 0.87 | 6.31 | 10.00 | 2.2 | 2.3 | 30 | 0.15 |
YEJ-100L2-2 | 4.00 | 2880 | 85.0 | 0.88 | 8.22 | 13.30 | 2.2 | 2.3 | 40 | 0.15 |
YEJ-112M-2 | 5.50 | 2910 | 86.0 | 0.88 | 11.2 | 18.00 | 2.2 | 2.3 | 80 | 0.15 |
YEJ-132S-2 | 7.00 | 2910 | 87.0 | 0.88 | 15.1 | 24.60 | 2.2 | 2.3 | 80 | 0.15 |
YEJ-132M-2 | 11.00 | 2930 | 88.0 | 0.89 | 21.3 | 35.90 | 2.2 | 2.3 | 150 | 0.30 |
YEJ-160M-2 | 15.00 | 2930 | 89.0 | 0.89 | 28.8 | 48.90 | 2.2 | 2.2 | 150 | 0.30 |
YEJ-160L-2 | 18.50 | 2935 | 90.0 | 0.90 | 34.7 | 60.20 | 2.2 | 2.2 | 150 | 0.30 |
YEJ-180M-2 | 22.00 | 2935 | 90.0 | 0.90 | 41.3 | 71.60 | 2.2 | 2.2 | 200 | 0.30 |
YEJ 1500r/min 380V 50Hz:
TYPE | RATED OUTPUT | RATED SPEED | EFFICENCY | POWER FOCTOR | RATED CURRENT | RATED TORQUE | LOCKED ROTOR TORQUE | MAXIMUM TORQUE | STATIC BRAKE TCRQUE | BRAKE TIME |
RATED TORQUE | RATED TORQUE | DC | ||||||||
KW | rpm | η% | COSφ | A | Nm | Ts/Tn | Tmax/Tn | NM | S | |
YEJ-631-4 | 0.12 | 1360 | 57.0 | 0.72 | 0.44 | 0.84 | 2.2 | 2.0 | 3.5 | 0.10 |
YEJ-632-4 | 0.18 | 1360 | 60.0 | 0.73 | 0.62 | 1.26 | 2.2 | 2.0 | 3.5 | 0.10 |
YEJ-711-4 | 0.25 | 1375 | 65.0 | 0.74 | 0.79 | 1.74 | 2.2 | 2.0 | 4.0 | 0.10 |
YEJ-712-4 | 0.37 | 1375 | 67.0 | 0.75 | 1.12 | 2.57 | 2.2 | 2.0 | 4.0 | 0.10 |
YEJ-801-4 | 0.55 | 1405 | 71.0 | 0.75 | 1.57 | 3.74 | 2.2 | 2.4 | 7.5 | 0.10 |
YEJ-802-4 | 0.75 | 1405 | 73.0 | 0.76 | 2.02 | 5.10 | 2.2 | 2.4 | 7.5 | 0.10 |
YEJ-90S-4 | 1.10 | 1445 | 75.0 | 0.77 | 2.82 | 7.27 | 2.2 | 2.3 | 15 | 0.15 |
YEJ-90L-4 | 1.50 | 1445 | 78.0 | 0.79 | 3.7 | 9.91 | 2.2 | 2.3 | 15 | 0.15 |
YEJ-100L1-4 | 2.20 | 1440 | 80.0 | 0.81 | 5.16 | 14.60 | 2.2 | 2.3 | 30 | 0.15 |
YEJ-100L2-4 | 3.00 | 1440 | 82.0 | 0.82 | 6.78 | 19.90 | 2.2 | 2.3 | 30 | 0.15 |
YEJ-112M-4 | 4.00 | 1440 | 84.0 | 0.82 | 8.82 | 26.50 | 2.2 | 2.3 | 40 | 0.15 |
YEJ-132S-4 | 5.50 | 1440 | 85.0 | 0.83 | 11.7 | 36.50 | 2.2 | 2.3 | 80 | 0.15 |
YEJ-132M-4 | 7.50 | 1440 | 87.0 | 0.84 | 15.6 | 49.70 | 2.2 | 2.3 | 80 | 0.15 |
YEJ-160M-4 | 11.00 | 1450 | 88.0 | 0.85 | 21.3 | 72.40 | 2.2 | 2.2 | 150 | 0.30 |
YEJ-160L-4 | 15.00 | 1450 | 89.0 | 0.85 | 30.1 | 98.80 | 2.2 | 2.2 | 150 | 0.30 |
YEJ-180M-4 | 18.50 | 1455 | 90.5 | 0.86 | 36.5 | 121.40 | 2.2 | 2.2 | 150 | 0.30 |
YEJ-180L-4 | 22.00 | 1455 | 91.0 | 0.86 | 43.1 | 144.40 | 2.0 | 2.2 | 200 | 0.30 |
YEJ 1000r/min 380V 50Hz:
TYPE | RATED OUTPUT | RATED SPEED | EFFICENCY | POWER FOCTOR | RATED CURRENT | RATED TORQUE | LOCKED ROTOR TORQUE | MAXIMUM TORQUE | STATIC BRAKE TCRQUE | BRAKE TIME |
RATED TORQUE | RATED TORQUE | DC | ||||||||
KW | rpm | η% | COSφ | A | Nm | Ts/Tn | Tmax/Tn | NM | S | |
YEJ-711-6 | 0.18 | 900 | 56.0 | 0.66 | 0.71 | 19.10 | 1.9 | 2.0 | 4.0 | 0.10 |
YEJ-712-6 | 0.25 | 900 | 59.0 | 0.68 | 0.95 | 2.65 | 1.9 | 2.0 | 4.0 | 0.10 |
YEJ-801-6 | 0.37 | 910 | 62.0 | 0.70 | 1.30 | 3.88 | 1.9 | 2.0 | 7.5 | 0.10 |
YEJ-802-6 | 0.55 | 910 | 65.0 | 0.72 | 1.79 | 5.77 | 1.9 | 2.1 | 7.5 | 0.10 |
YEJ-90S-6 | 0.75 | 930 | 69.0 | 0.72 | 2.26 | 7.70 | 2.1 | 2.1 | 15 | 0.15 |
YEJ-90L-6 | 1.10 | 940 | 72.0 | 0.73 | 3.14 | 11.20 | 2.1 | 2.1 | 15 | 0.15 |
YEJ-100L-6 | 1.50 | 940 | 76.0 | 0.76 | 3.95 | 15.20 | 2.2 | 2.1 | 30 | 0.15 |
YEJ-112M-6 | 2.20 | 96o | 79.0 | 0.76 | 5.57 | 21.90 | 2.2 | 2.1 | 40 | 0.15 |
YEJ-132S-6 | 3.00 | 960 | 81.0 | 0.76 | 7.40 | 29.80 | 2.2 | 2.1 | 80 | 0.15 |
YEJ-132M1-6 | 4.00 | 960 | 82.0 | 0.76 | 9.63 | 39.80 | 2.2 | 2.1 | 80 | 0.15 |
YEJ-132M2-6 | 5.50 | 960 | 84.0 | 0.77 | 12.90 | 54.70 | 2.2 | 2.1 | 150 | 0.30 |
YEJ-160M-6 | 7.50 | 970 | 86.0 | 0.77 | 17.00 | 73.80 | 1.8 | 2.1 | 150 | 0.30 |
YEJ-160L-6 | 11.00 | 970 | 87.5 | 0.78 | 24.30 | 108.30 | 1.9 | 2.1 | 150 | 0.30 |
YEJ-180L-6 | 15.00 | 970 | 89.0 | 0.81 | 31.60 | 147.70 | 2.1 | 2.1 | 200 | 0.30 |
Certifications
Packaging & Shipping
Company Profile
TLWERK, established by the R&D, production and sales team with more than 10 years of technical experience, is a professional trade company. We focus on the R&D, technology and sales services of induction motors and motor power source systems, especially for the customized development of products according to the specific application requirements of customers. The products are produced and tested by our professional motor manufacturers and related motor system manufacturers in the partnership. The developed three-phase asynchronous motor series are: YS/MS, YL/ML, YE3, YE4, YEJ, YVP and permanent magnet motors. Our products have got a good domestic market and a good fame in more than 30 provinces and cities in China, and now gradually expand the international market.
We have our own experienced R&D team, modern production lines and high-precision testing equipment. The manufacturer strictly implements the ISO9001-2015 quality management system, and all products have been inspected, and have obtained national CCC certification and international CE certification, as well as other relevant international certifications. Our motor products are widely used in different fields such as reducers, hydraulic equipment, lifting equipment, fans, wind power, home appliances, food, clothing, papermaking, packaging, ceramics, printing, chemical industry, animal husbandry machinery, woodworking machinery, agriculture and water conservancy.
We adhere to the business philosophy of “Life, based on quality; Trust, based on honesty; Win-win cooperation”, and insists on giving back to all customers with high-quality products and comprehensive services!
FAQ
1.How about your MOQ and lead time?
Both MOQ and lead time depends on specific products. Generally speaking, it cost 10-30 days.
2.Can I get sample?
Yes. We offer sample motor.
3.Is customized service available?
OEM & ODM both are available. Please inform us with output power, speed rpm, output torque, using voltage and application range.
4. What is your payment term?
30% T/T in advance, 70% balance before shipment
30% T/T in advance, 70% balance 30 days after BL date by ocean, 15 days after AWB date by air, after a long-term stable cooperation.
5. What about warranty?
One year, during the guarantee period, we will supply freely of the easy damaged parts for the possible problems except for the incorrect operation. After expiration, we supply cost spare parts for alternator maintenance.
6.Why us?
* Professional factory for Electric Motor in China
*Safety / Energy Consumption / Superior Life
* Full of export experiences.
* 100% tested before delivery
* A complete set of motor solutions can be provided.
* Perfect performance, low noise, slight vibration, reliable running, good appearance, small volume, light weight and easy maintenance.
* CE/ISO Approved
Before Sale | After Sale | ||
1 | Sample Confirmation | 1 | Comprehensive service with separate after-sale team |
2 | Providing information consulting and technical guidance. | 2 | Satisfied solution while any problem identified. |
3 | Packaging can be customized. | 3 | Exclusive and unique solution provided by professional engineers. |
4 | Reply to your enquiry in 24 working hours. | 4 | New craft, new technology and other related advisory services. |
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Application: | Industrial |
---|---|
Speed: | Constant Speed |
Number of Stator: | Three-Phase |
Function: | Driving |
Casing Protection: | Protection Type |
Number of Poles: | 2, 4, 6, 8 |
Samples: |
US$ 150/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
What safety precautions should be followed when working with brake motors?
Working with brake motors requires adherence to specific safety precautions to ensure the well-being of personnel and the proper functioning of the equipment. Brake motors involve electrical components and potentially hazardous mechanical operations, so it is essential to follow established safety guidelines. Here’s a detailed explanation of the safety precautions that should be followed when working with brake motors:
- Qualified Personnel: Only trained and qualified individuals should be allowed to work with brake motors. They should have a thorough understanding of electrical systems, motor operation, and safety procedures. Proper training ensures that personnel are familiar with the specific risks associated with brake motors and know how to handle them safely.
- Power Isolation: Before performing any maintenance or repair tasks on a brake motor, it is crucial to isolate the power supply to the motor. This can be achieved by disconnecting the power source and following lockout/tagout procedures to prevent accidental re-energization. Power isolation eliminates the risk of electric shock and allows safe access to the motor without the danger of unexpected startup.
- Personal Protective Equipment (PPE): When working with brake motors, appropriate personal protective equipment should be worn. This may include safety glasses, gloves, protective clothing, and hearing protection, depending on the specific hazards present. PPE helps safeguard against potential hazards such as flying debris, electrical shocks, and excessive noise, providing an additional layer of protection for personnel.
- Proper Ventilation: Adequate ventilation should be ensured when working with brake motors, especially in indoor environments. Ventilation helps dissipate heat generated by the motor and prevents the buildup of potentially harmful fumes or gases. Proper ventilation reduces the risk of overheating and improves air quality, creating a safer working environment.
- Safe Lifting and Handling: Brake motors can be heavy and require proper lifting and handling techniques to prevent injuries. When moving or installing a motor, personnel should use appropriate lifting equipment, such as cranes or hoists, and follow safe lifting practices. It is important to avoid overexertion, use proper body mechanics, and seek assistance when necessary to prevent strains or accidents.
- Protection Against Moving Parts: Brake motors may have rotating or moving parts that pose a risk of entanglement or crushing injuries. Guards and protective covers should be in place to prevent accidental contact with these hazardous areas. Personnel should never reach into or attempt to adjust the motor while it is in operation or without proper lockout/tagout procedures in place.
- Maintenance and Inspection: Regular maintenance and inspection of brake motors are essential for their safe and reliable operation. Maintenance tasks should only be performed by qualified personnel following manufacturer recommendations. Before conducting any maintenance or inspection, the motor should be properly isolated and de-energized. Visual inspections, lubrication, and component checks should be carried out according to the motor’s maintenance schedule to identify and address any potential issues before they escalate.
- Follow Manufacturer Guidelines: It is crucial to follow the manufacturer’s guidelines and recommendations when working with brake motors. This includes adhering to installation procedures, operating instructions, and maintenance practices specified by the manufacturer. Manufacturers provide specific safety instructions and precautions that are tailored to their equipment, ensuring safe and efficient operation when followed meticulously.
- Training and Awareness: Ongoing training and awareness programs should be implemented to keep personnel updated on safety practices and potential hazards associated with brake motors. This includes providing clear instructions, conducting safety meetings, and promoting a safety-conscious culture. Personnel should be encouraged to report any safety concerns or incidents to ensure continuous improvement of safety measures.
By following these safety precautions, personnel can mitigate risks and create a safer working environment when dealing with brake motors. Adhering to proper procedures, using appropriate PPE, ensuring power isolation, practicing safe lifting and handling, protecting against moving parts, conducting regular maintenance and inspections, and staying informed about manufacturer guidelines are all crucial steps in maintaining a safe and efficient work environment when working with brake motors.
What factors should be considered when selecting the right brake motor for a task?
When selecting the right brake motor for a task, several factors should be carefully considered to ensure optimal performance and compatibility with the specific application requirements. These factors help determine the suitability of the brake motor for the intended task and play a crucial role in achieving efficient and reliable operation. Here’s a detailed explanation of the key factors that should be considered when selecting a brake motor:
1. Load Characteristics: The characteristics of the load being driven by the brake motor are essential considerations. Factors such as load size, weight, and inertia influence the torque, power, and braking requirements of the motor. It is crucial to accurately assess the load characteristics to select a brake motor with the appropriate power rating, torque capacity, and braking capability to handle the specific load requirements effectively.
2. Stopping Requirements: The desired stopping performance of the brake motor is another critical factor to consider. Different applications may have specific stopping time, speed, or precision requirements. The brake motor should be selected based on its ability to meet these stopping requirements, such as adjustable braking torque, controlled response time, and stability during stopping. Understanding the desired stopping behavior is crucial for selecting a brake motor that can provide the necessary control and accuracy.
3. Environmental Conditions: The operating environment in which the brake motor will be installed plays a significant role in its selection. Factors such as temperature, humidity, dust, vibration, and corrosive substances can affect the performance and lifespan of the motor. It is essential to choose a brake motor that is designed to withstand the specific environmental conditions of the application, ensuring reliable and durable operation over time.
4. Mounting and Space Constraints: The available space and mounting requirements should be considered when selecting a brake motor. The physical dimensions and mounting options of the motor should align with the space constraints and mounting configuration of the application. It is crucial to ensure that the brake motor can be properly installed and integrated into the existing machinery or system without compromising the performance or safety of the overall setup.
5. Power Supply: The availability and characteristics of the power supply should be taken into account. The voltage, frequency, and power quality of the electrical supply should match the specifications of the brake motor. It is important to consider factors such as single-phase or three-phase power supply, voltage fluctuations, and compatibility with other electrical components to ensure proper operation and avoid electrical issues or motor damage.
6. Brake Type and Design: Different brake types, such as electromagnetic brakes or spring-loaded brakes, offer specific advantages and considerations. The choice of brake type should align with the requirements of the application, taking into account factors such as braking torque, response time, and reliability. The design features of the brake, such as braking surface area, cooling methods, and wear indicators, should also be evaluated to ensure efficient and long-lasting braking performance.
7. Regulatory and Safety Standards: Compliance with applicable regulatory and safety standards is crucial when selecting a brake motor. Depending on the industry and application, specific standards and certifications may be required. It is essential to choose a brake motor that meets the necessary standards and safety requirements to ensure the protection of personnel, equipment, and compliance with legal obligations.
8. Cost and Lifecycle Considerations: Finally, the cost-effectiveness and lifecycle considerations should be evaluated. This includes factors such as initial investment, maintenance requirements, expected lifespan, and availability of spare parts. It is important to strike a balance between upfront costs and long-term reliability, selecting a brake motor that offers a favorable cost-to-performance ratio and aligns with the expected lifecycle and maintenance budget.
Considering these factors when selecting a brake motor helps ensure that the chosen motor is well-suited for the intended task, provides reliable and efficient operation, and meets the specific requirements of the application. Proper evaluation and assessment of these factors contribute to the overall success and performance of the brake motor in its designated task.
How do brake motors ensure controlled and rapid stopping of rotating equipment?
Brake motors are designed to ensure controlled and rapid stopping of rotating equipment by employing specific braking mechanisms. These mechanisms are integrated into the motor to provide efficient and precise stopping capabilities. Here’s a detailed explanation of how brake motors achieve controlled and rapid stopping:
1. Electromagnetic Brakes: Many brake motors utilize electromagnetic brakes as the primary braking mechanism. These brakes consist of an electromagnetic coil and a brake disc or plate. When the power to the motor is cut off or the motor is de-energized, the electromagnetic coil generates a magnetic field that attracts the brake disc or plate, creating friction and halting the rotation of the motor shaft. The strength of the magnetic field and the design of the brake determine the stopping torque and speed, allowing for controlled and rapid stopping of the rotating equipment.
2. Spring-Loaded Brakes: Some brake motors employ spring-loaded brakes. These brakes consist of a spring that applies pressure on the brake disc or plate to create friction and stop the rotation. When the power is cut off or the motor is de-energized, the spring is released, pressing the brake disc against a stationary surface and generating braking force. The spring-loaded mechanism ensures quick engagement of the brake, resulting in rapid stopping of the rotating equipment.
3. Dynamic Braking: Dynamic braking is another technique used in brake motors to achieve controlled stopping. It involves converting the kinetic energy of the rotating equipment into electrical energy, which is dissipated as heat through a resistor or regenerative braking system. When the power is cut off or the motor is de-energized, the motor acts as a generator, and the electrical energy generated by the rotating equipment is converted into heat through the braking system. This dissipation of energy slows down and stops the rotation of the equipment in a controlled manner.
4. Control Systems: Brake motors are often integrated with control systems that enable precise control over the braking process. These control systems allow for adjustable braking torque, response time, and braking profiles, depending on the specific requirements of the application. By adjusting these parameters, operators can achieve the desired level of control and stopping performance, ensuring both safety and operational efficiency.
5. Coordinated Motor and Brake Design: Brake motors are designed with careful consideration of the motor and brake compatibility. The motor’s characteristics, such as torque, speed, and power rating, are matched with the braking system’s capabilities to ensure optimal performance. This coordinated design ensures that the brake can effectively stop the motor within the desired time frame and with the necessary braking force, achieving controlled and rapid stopping of the rotating equipment.
Overall, brake motors employ electromagnetic brakes, spring-loaded brakes, dynamic braking, and control systems to achieve controlled and rapid stopping of rotating equipment. These braking mechanisms, combined with coordinated motor and brake design, enable precise control over the stopping process, ensuring the safety of operators, protecting equipment from damage, and maintaining operational efficiency.
editor by CX 2024-04-04